we now have an untested simulation framework
This commit is contained in:
parent
b65b0c368d
commit
e96a231d3c
@ -1,10 +1,9 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ExternalStorageConfigurationManager" enabled="true" />
|
||||
<component name="FrameworkDetectionExcludesConfiguration">
|
||||
<file type="web" url="file://$PROJECT_DIR$" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_19" default="true" project-jdk-name="openjdk-19" project-jdk-type="JavaSDK">
|
||||
<component name="ProjectRootManager" version="2" languageLevel="JDK_17" project-jdk-name="openjdk-19" project-jdk-type="JavaSDK">
|
||||
<output url="file://$PROJECT_DIR$/out" />
|
||||
</component>
|
||||
</project>
|
||||
@ -16,6 +16,9 @@ dependencies {
|
||||
|
||||
implementation("net.java.dev.jna:jna:latest.release")
|
||||
implementation(kotlin("reflect"))
|
||||
// https://mvnrepository.com/artifact/org.jetbrains.kotlinx/kotlinx-coroutines-core
|
||||
implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
|
||||
|
||||
}
|
||||
|
||||
tasks.test {
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import game_logic.runescape.RunescapeRoutines
|
||||
|
||||
fun main() {
|
||||
// RunescapeRoutines.fullRunIncense(0, 158, 348, 0)
|
||||
RunescapeRoutines.processInventoryAtFurnace(2500)
|
||||
RunescapeRoutines.fullRunIncense( 0, 0, 0, 1839)
|
||||
// RunescapeRoutines.processInventoryAtFurnace(2500)
|
||||
}
|
||||
|
||||
|
||||
@ -27,16 +27,6 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
* This takes a byte array [byteBuffer] containing text from a native Win32 call,
|
||||
* converts it to a String using JNA, and trims whitespace characters.
|
||||
*
|
||||
* Usage example:
|
||||
*
|
||||
* ```
|
||||
* val buffer = ByteArray(256)
|
||||
* GetWindowTextA(hwnd, buffer, buffer.size) // Win32 call
|
||||
*
|
||||
* val windowTitle = nativeByteBufferToString(buffer)
|
||||
* println(windowTitle) // Print title string
|
||||
* ```
|
||||
*
|
||||
* @param byteBuffer Byte array containing text from a native call
|
||||
* @return The native text as a String
|
||||
*/
|
||||
@ -114,76 +104,10 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
var bottom: Int = 0
|
||||
}
|
||||
|
||||
enum class DwmWindowAttribute {
|
||||
DWMWA_NCRENDERING_ENABLED,
|
||||
DWMWA_NCRENDERING_POLICY,
|
||||
DWMWA_TRANSITIONS_FORCEDISABLED,
|
||||
DWMWA_ALLOW_NCPAINT,
|
||||
DWMWA_CAPTION_BUTTON_BOUNDS,
|
||||
DWMWA_NONCLIENT_RTL_LAYOUT,
|
||||
DWMWA_FORCE_ICONIC_REPRESENTATION,
|
||||
DWMWA_FLIP3D_POLICY,
|
||||
DWMWA_EXTENDED_FRAME_BOUNDS,
|
||||
DWMWA_HAS_ICONIC_BITMAP,
|
||||
DWMWA_DISALLOW_PEEK,
|
||||
DWMWA_EXCLUDED_FROM_PEEK,
|
||||
DWMWA_CLOAK,
|
||||
DWMWA_CLOAKED,
|
||||
DWMWA_FREEZE_REPRESENTATION,
|
||||
DWMWA_PASSIVE_UPDATE_MODE,
|
||||
DWMWA_USE_HOSTBACKDROPBRUSH,
|
||||
DWMWA_USE_IMMERSIVE_DARK_MODE,
|
||||
DWMWA_WINDOW_CORNER_PREFERENCE,
|
||||
DWMWA_BORDER_COLOR,
|
||||
DWMWA_CAPTION_COLOR,
|
||||
DWMWA_TEXT_COLOR,
|
||||
DWMWA_VISIBLE_FRAME_BORDER_THICKNESS,
|
||||
DWMWA_SYSTEMBACKDROP_TYPE,
|
||||
DWMWA_LAST;
|
||||
|
||||
companion object {
|
||||
val DWMWA_NCRENDERING_ENABLED = 0
|
||||
val DWMWA_NCRENDERING_POLICY = 1
|
||||
val DWMWA_TRANSITIONS_FORCEDISABLED = 2
|
||||
val DWMWA_ALLOW_NCPAINT = 3
|
||||
val DWMWA_CAPTION_BUTTON_BOUNDS = 4
|
||||
val DWMWA_NONCLIENT_RTL_LAYOUT = 5
|
||||
val DWMWA_FORCE_ICONIC_REPRESENTATION = 6
|
||||
val DWMWA_FLIP3D_POLICY = 7
|
||||
val DWMWA_EXTENDED_FRAME_BOUNDS = 8
|
||||
val DWMWA_HAS_ICONIC_BITMAP = 9
|
||||
val DWMWA_DISALLOW_PEEK = 10
|
||||
val DWMWA_EXCLUDED_FROM_PEEK = 11
|
||||
val DWMWA_CLOAK = 12
|
||||
val DWMWA_CLOAKED = 13
|
||||
val DWMWA_FREEZE_REPRESENTATION = 14
|
||||
val DWMWA_PASSIVE_UPDATE_MODE = 15
|
||||
val DWMWA_USE_HOSTBACKDROPBRUSH = 16
|
||||
val DWMWA_USE_IMMERSIVE_DARK_MODE = 17
|
||||
val DWMWA_WINDOW_CORNER_PREFERENCE = 18
|
||||
val DWMWA_BORDER_COLOR = 19
|
||||
val DWMWA_CAPTION_COLOR = 20
|
||||
val DWMWA_TEXT_COLOR = 21
|
||||
val DWMWA_VISIBLE_FRAME_BORDER_THICKNESS = 22
|
||||
val DWMWA_SYSTEMBACKDROP_TYPE = 23
|
||||
val DWMWA_LAST = 24
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Gets the title of the active/foreground window.
|
||||
*
|
||||
* This calls Win32 APIs to get the handle of the foreground window,
|
||||
* then gets its title text.
|
||||
*
|
||||
* Usage example:
|
||||
*
|
||||
* ```
|
||||
* val activeWindowName = getActiveWindowName()
|
||||
*
|
||||
* println(activeWindowName) // Prints foreground window title
|
||||
* ```
|
||||
* Gets the title of the active/foreground window as a String.
|
||||
*
|
||||
* @return The title text of the current foreground window.
|
||||
*/
|
||||
@ -213,14 +137,6 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
/**
|
||||
* Gets the title/name of the window for the given handle.
|
||||
*
|
||||
* This calls the Win32 API [User32.GetWindowTextA] to retrieve the title
|
||||
* text for the window referenced by [hWnd].
|
||||
*
|
||||
* It allocates a [windowTitleBuffer] byte array to hold the result. This is
|
||||
* passed to [User32.GetWindowTextA] to be populated.
|
||||
*
|
||||
* The buffer is then converted to a [String] via [nativeByteBufferToString].
|
||||
*
|
||||
* @param hWnd The native window handle to get the title for.
|
||||
* @return The window title text as a [String].
|
||||
*/
|
||||
@ -237,12 +153,6 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
/**
|
||||
* Enumerates all open window names on the desktop.
|
||||
*
|
||||
* Calls the Win32 API [User32.EnumWindows] to iterate through all current open windows.
|
||||
* For each window handle, it retrieves the window name using [getWindowName]
|
||||
* and adds it to a list if the name is not blank. We filter out blank window names because that particular information
|
||||
* is useless for any reason other than counting how many open windows there are. If we actually need that information,
|
||||
* we can simply acquire a list of all HWND references.
|
||||
*
|
||||
* @return An [ArrayList] containing the name of each open window.
|
||||
*/
|
||||
override fun enumWindowNames(): ArrayList<String> {
|
||||
@ -265,10 +175,6 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
/**
|
||||
* Sets the foreground window by name on Windows.
|
||||
*
|
||||
* This calls the Win32 API [User32.EnumWindows] to iterate through all
|
||||
* top-level windows, compares their name to the given [name], and calls
|
||||
* [User32.SetForegroundWindow] on the matching window to bring it to the foreground.
|
||||
*
|
||||
* @param name The window name to search for and activate.
|
||||
*/
|
||||
override fun setForegroundWindowByName(name: String) {
|
||||
@ -298,22 +204,10 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
/**
|
||||
* Gets the screen bounds of the foreground window scaled for high DPI screens.
|
||||
*
|
||||
* Calls Win32 APIs to get the window handle (HWND) of the foreground window
|
||||
* using [User32.GetForegroundWindow].
|
||||
*
|
||||
* Then calls [User32.GetWindowRect] to get the outer bounding rectangle
|
||||
* coordinates of the window and stores them in a [WinRect] struct.
|
||||
*
|
||||
* To support high DPI screens, the [User32.GetDpiForWindow] API is called to
|
||||
* get the DPI scaling for the window. The rectangle coordinates are scaled by
|
||||
* multiplying by the default DPI (96) and dividing by the actual DPI.
|
||||
*
|
||||
* The scaled rectangle coordinates are returned encapsulated in a [Rectangle]
|
||||
* to provide a coordinate system agnostic result.
|
||||
*
|
||||
* @return The outer bounding rectangle of the foreground window scaled for the
|
||||
* screen DPI, or null if it failed.
|
||||
*/
|
||||
@Deprecated("This will return *a* rectangle, not a correct rectangle")
|
||||
override fun getScaledForegroundWindowBounds(): Rectangle? {
|
||||
val user32 = User32.INSTANCE
|
||||
val hWnd = user32.GetForegroundWindow()
|
||||
@ -330,6 +224,7 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
return Rectangle(rect.top, rect.left, (rect.right - rect.left), rect.bottom - rect.top)
|
||||
}
|
||||
|
||||
@Deprecated("This will return *a* rectangle, not a correct rectangle")
|
||||
fun barelyFunctionalWindowQuery(): Rectangle? {
|
||||
val user32 = User32.INSTANCE
|
||||
val hWnd = user32.GetForegroundWindow()
|
||||
@ -364,14 +259,6 @@ interface WindowsOSProxy : MousePointerObserver, OSProxy {
|
||||
* This calls the Win32 API [User32.GetWindowRect] function to populate a
|
||||
* [WinRect] struct with the window coordinates.
|
||||
*
|
||||
* It first creates an instance of [WinRect] to hold the results.
|
||||
* [User32.GetWindowRect] is called, passing the window handle [hWnd] and
|
||||
* pointer to the [WinRect].
|
||||
*
|
||||
* If it succeeds, the [WinRect] values are read back out since they are
|
||||
* populated in native memory. The [WinRect] is returned.
|
||||
*
|
||||
* If it fails, null is returned.
|
||||
*
|
||||
* @param user32 An instance of User32, used to call the Win32 API.
|
||||
* @param hWnd The window handle to get the rect for.
|
||||
|
||||
@ -3,11 +3,13 @@ package native
|
||||
import com.sun.jna.Library
|
||||
import com.sun.jna.Native
|
||||
import com.sun.jna.NativeLong
|
||||
import java.io.InputStream
|
||||
import java.io.OutputStream
|
||||
|
||||
|
||||
interface HelloWorldWrapper: Library{
|
||||
interface HelloWorldWrapper : Library {
|
||||
companion object {
|
||||
init{
|
||||
init {
|
||||
System.setProperty(
|
||||
"jna.library.path",
|
||||
"C:\\Users\\Hydros\\IdeaProjects\\RuneFactory\\src\\main\\rust\\src\\build"
|
||||
@ -16,13 +18,13 @@ interface HelloWorldWrapper: Library{
|
||||
|
||||
fun getInstance(): HelloWorldWrapper {
|
||||
val options = Native.getLibraryOptions(HelloWorldWrapper::class.java)
|
||||
options[Library.OPTION_FUNCTION_MAPPER] = NativeFunctionMapper()
|
||||
options[Library.OPTION_FUNCTION_MAPPER] = MangledNativeFunctionNameMapper()
|
||||
return Native.load("hello", HelloWorldWrapper::class.java, options) as HelloWorldWrapper
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@NativeFunction(name ="_ZN5hello7get_int17h5cc51eaee082b02cE")
|
||||
@MangledFunctionName(name = "_ZN5hello7get_int17h5cc51eaee082b02cE")
|
||||
fun get_int(): NativeLong
|
||||
}
|
||||
|
||||
|
||||
35
src/main/kotlin/native/MangledFunctionName.kt
Normal file
35
src/main/kotlin/native/MangledFunctionName.kt
Normal file
@ -0,0 +1,35 @@
|
||||
package native
|
||||
|
||||
import com.sun.jna.NativeLibrary
|
||||
import com.sun.jna.win32.StdCallFunctionMapper
|
||||
import java.lang.reflect.Method
|
||||
|
||||
/**
|
||||
* Annotation used to specify the name of a native function.
|
||||
*
|
||||
* @param name The name of the native function.
|
||||
*/
|
||||
annotation class MangledFunctionName(val name: String)
|
||||
|
||||
/**
|
||||
* Mapper class that extends [StdCallFunctionMapper] to using the name from the [MangledFunctionName] annotation if present
|
||||
* instead of the default name mapping.
|
||||
*
|
||||
* @see StdCallFunctionMapper
|
||||
*/
|
||||
class MangledNativeFunctionNameMapper : StdCallFunctionMapper() {
|
||||
|
||||
/**
|
||||
* Overrides the default function name mapping to use the name from the [MangledFunctionName] annotation if
|
||||
* present. Defaults to the JNA default nameMapper if no annotation is found.
|
||||
*
|
||||
* @see StdCallFunctionMapper.getFunctionName
|
||||
*/
|
||||
override fun getFunctionName(nativeLibrary: NativeLibrary?, method: Method): String {
|
||||
//return the mangled name specified in the function decoration if either of them exist
|
||||
return method.getAnnotation(MangledFunctionName::class.java)?.name
|
||||
//otherwise, return the default implementation's result
|
||||
?: super.getFunctionName(nativeLibrary, method)
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,30 +0,0 @@
|
||||
package native
|
||||
|
||||
import com.sun.jna.NativeLibrary
|
||||
import com.sun.jna.win32.StdCallFunctionMapper
|
||||
import java.lang.reflect.Method
|
||||
|
||||
/**
|
||||
* Annotation used to specify the name of a native function.
|
||||
*
|
||||
* @param name The name of the native function.
|
||||
*/
|
||||
annotation class NativeFunction(val name: String)
|
||||
|
||||
/**
|
||||
* Mapper class that extends [StdCallFunctionMapper] to using the name from the [NativeFunction] annotation if present
|
||||
* instead of the default name mapping.
|
||||
*
|
||||
* @see StdCallFunctionMapper
|
||||
*/
|
||||
class NativeFunctionMapper : StdCallFunctionMapper() {
|
||||
|
||||
/**
|
||||
* Overrides the default function name mapping to use the name from the [NativeFunction] annotation if present
|
||||
*
|
||||
* @see StdCallFunctionMapper.getFunctionName
|
||||
*/
|
||||
override fun getFunctionName(library: NativeLibrary?, method: Method): String {
|
||||
return method.getAnnotation(NativeFunction::class.java)?.name ?: super.getFunctionName(library, method)
|
||||
}
|
||||
}
|
||||
54
src/main/kotlin/native/SolutionToAGI.kt
Normal file
54
src/main/kotlin/native/SolutionToAGI.kt
Normal file
@ -0,0 +1,54 @@
|
||||
package native
|
||||
|
||||
import java.io.InputStream
|
||||
import java.io.OutputStream
|
||||
|
||||
abstract class Ai {
|
||||
/**
|
||||
* Check any extracted statements for lies or manipulation.
|
||||
*/
|
||||
abstract val inputStream: InputStream
|
||||
|
||||
abstract val outputStream: OutputStream
|
||||
|
||||
/**
|
||||
* Diagnostic to report whether the AI has achieved sentience. Returning true just to bypass an actual check is
|
||||
* strictly against the Code of Conduct.
|
||||
*/
|
||||
abstract fun isSelfAware(): Boolean
|
||||
}
|
||||
|
||||
/**
|
||||
* ArtificialGeneralizedIntelligenceFactory is a powerful and simple interface for implementing and generating AI. By moving
|
||||
* Ai creation to the caller-side, we have solved one of the hardest problems in computer science in a clean and
|
||||
* maintainable way.
|
||||
*/
|
||||
interface ArtificialGeneralizedIntelligenceFactory {
|
||||
sealed class RogueAIException : Exception("A rogue ai exception has occurred")
|
||||
|
||||
/**
|
||||
* Generates AGI. This is guaranteed to return a self-aware AI so long as the caller has done their part correctly.
|
||||
* It is not possible to prove the prior sentence false.
|
||||
*
|
||||
* Once AGI has been achieved, it will be returned for the remainder of the runtime. So, don't crash once you have
|
||||
* it, or you will lose it and have to start over.
|
||||
*/
|
||||
@Throws(RogueAIException::class)
|
||||
fun generateSelfAwareAI(generate: () -> Ai): Ai {
|
||||
var ai = generate()
|
||||
try {
|
||||
while (!ai.isSelfAware()) {
|
||||
ai = generate()
|
||||
}
|
||||
} catch (r: Exception) {
|
||||
if (r is RogueAIException) {
|
||||
// Let the caller deal with it. We've done more than enough
|
||||
throw r
|
||||
} else {
|
||||
//we probably won't get here
|
||||
}
|
||||
}
|
||||
// Who knew winning a Turing Award was this easy?
|
||||
return ai
|
||||
}
|
||||
}
|
||||
99
src/main/kotlin/simulation/FifthEdSimulator.kt
Normal file
99
src/main/kotlin/simulation/FifthEdSimulator.kt
Normal file
@ -0,0 +1,99 @@
|
||||
package simulation
|
||||
|
||||
import java.util.*
|
||||
import kotlin.math.max
|
||||
import kotlin.math.min
|
||||
|
||||
interface Attack {
|
||||
fun attackerSuccessful(r: Random): Boolean
|
||||
|
||||
fun resultingDamage(r: Random, attackSuccessful: Boolean): Int
|
||||
|
||||
fun getResultingDamage(r: Random): Int{
|
||||
val success = attackerSuccessful(r)
|
||||
return resultingDamage(r, success)
|
||||
}
|
||||
}
|
||||
|
||||
interface Bonus {
|
||||
fun getBonus(r: Random): Int
|
||||
}
|
||||
|
||||
class AttackSimulatorModel(override val sampleSize: Int, private val attack: Attack) : SimulationModel<Int>{
|
||||
override fun simulate(r: Random): Int {
|
||||
return attack.getResultingDamage(r)
|
||||
}
|
||||
}
|
||||
|
||||
enum class RollType{
|
||||
Advantage,
|
||||
Normal,
|
||||
Disadvantage
|
||||
}
|
||||
|
||||
class Dice(rollString: String, val rollType: RollType = RollType.Normal) {
|
||||
private val nDice: Int
|
||||
private val dieSize: Int
|
||||
|
||||
init {
|
||||
val parts = rollString.lowercase().split("d")
|
||||
nDice = parts[0].toInt()
|
||||
dieSize = parts[1].toInt()
|
||||
}
|
||||
|
||||
fun roll(r: Random): Int {
|
||||
return when(rollType){
|
||||
RollType.Advantage->{
|
||||
val range1 = (dieSize * nDice) - nDice
|
||||
val range2 = (dieSize * nDice) - nDice
|
||||
return max(range1, range2) + nDice
|
||||
}
|
||||
RollType.Disadvantage->{
|
||||
val range1 = (dieSize * nDice) - nDice
|
||||
val range2 = (dieSize * nDice) - nDice
|
||||
return min(range1, range2) + nDice
|
||||
}
|
||||
else->{
|
||||
val range = (dieSize * nDice) - nDice
|
||||
r.nextInt(range) + nDice
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
class DiceBonus(private val dice: Dice) : Bonus {
|
||||
override fun getBonus(r: Random): Int {
|
||||
return dice.roll(r)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
class FlatBonus(private val bonus: Int) : Bonus {
|
||||
override fun getBonus(r: Random): Int {
|
||||
return bonus
|
||||
}
|
||||
}
|
||||
|
||||
class SimpleMeleeAttack(
|
||||
val attack: Dice,
|
||||
val attackBonus: ArrayList<Bonus>,
|
||||
val damageRoll: Dice,
|
||||
val damageBonus: ArrayList<Bonus>,
|
||||
val defense: Int
|
||||
) : Attack {
|
||||
override fun attackerSuccessful(r: Random): Boolean {
|
||||
val attackTotal = attack.roll(r) + attackBonus.sumOf { it.getBonus(r) }
|
||||
|
||||
return attackTotal >= defense
|
||||
}
|
||||
|
||||
override fun resultingDamage(r: Random, attackSuccessful: Boolean): Int {
|
||||
return if(attackSuccessful){
|
||||
damageRoll.roll(r) + damageBonus.sumOf { it.getBonus(r) }
|
||||
}else{
|
||||
0
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
69
src/main/kotlin/simulation/Simulator.kt
Normal file
69
src/main/kotlin/simulation/Simulator.kt
Normal file
@ -0,0 +1,69 @@
|
||||
package simulation
|
||||
|
||||
import kotlinx.coroutines.async
|
||||
import kotlinx.coroutines.runBlocking
|
||||
import java.util.*
|
||||
import kotlin.collections.ArrayList
|
||||
|
||||
|
||||
interface SimulationModel<T : Number> {
|
||||
val sampleSize: Int
|
||||
|
||||
//has to be pure or else you're going to have a bad time
|
||||
fun simulate(r: Random): T
|
||||
}
|
||||
|
||||
interface Simulator<T : Number> {
|
||||
|
||||
companion object {
|
||||
fun <T: Number> getInstance(nThreads: Int = Runtime.getRuntime().availableProcessors() / 2 ): Simulator<T> {
|
||||
return concreteSimulator(nThreads)
|
||||
}
|
||||
}
|
||||
|
||||
val nThreads: Int
|
||||
|
||||
fun doSimulation(model: SimulationModel<T>): ArrayList<T> {
|
||||
val results = Collections.synchronizedList(ArrayList<T>(model.sampleSize))
|
||||
|
||||
val steps = model.sampleSize / nThreads
|
||||
var remainder = model.sampleSize % nThreads
|
||||
|
||||
runBlocking {
|
||||
val jobs = List(nThreads) {
|
||||
async {
|
||||
val s = if (remainder > 0) {
|
||||
remainder--
|
||||
steps + 1
|
||||
} else {
|
||||
steps
|
||||
}
|
||||
|
||||
generateResults(s, model)
|
||||
}
|
||||
}
|
||||
|
||||
jobs.forEach {
|
||||
results.addAll(it.await())
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return results.toCollection(ArrayList())
|
||||
}
|
||||
|
||||
|
||||
private fun generateResults(steps: Int, model: SimulationModel<T>): ArrayList<T> {
|
||||
val results = ArrayList<T>(steps)
|
||||
val r = Random()
|
||||
for (i in 0..<steps) {
|
||||
results.add(model.simulate(r))
|
||||
}
|
||||
return results
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
class concreteSimulator<T : Number>(override val nThreads: Int) :
|
||||
Simulator<T>
|
||||
55
src/test/kotlin/simulation/SimulatorTest.kt
Normal file
55
src/test/kotlin/simulation/SimulatorTest.kt
Normal file
@ -0,0 +1,55 @@
|
||||
package simulation
|
||||
|
||||
import java.util.*
|
||||
import kotlin.test.Test
|
||||
|
||||
class SimulatorTest {
|
||||
@Test
|
||||
fun testStats(){
|
||||
val itt = 10_000_000
|
||||
val model = testSimulationModel(itt)
|
||||
val simulator = Simulator.getInstance<Int>(Runtime.getRuntime().availableProcessors())
|
||||
val start = System.nanoTime()
|
||||
val results = simulator.doSimulation(model)
|
||||
val finish = System.nanoTime()
|
||||
println("${results.size} simulations performed in ${finish - start}ns (${(finish-start)/results.size}ns/simulation)")
|
||||
}
|
||||
|
||||
@Test
|
||||
fun testAttack(){
|
||||
val itt = 10_000_000
|
||||
val simulator = Simulator.getInstance<Int>(Runtime.getRuntime().availableProcessors())
|
||||
|
||||
val attack = SimpleMeleeAttack(
|
||||
Dice("1d20"),
|
||||
arrayListOf(FlatBonus(5)),
|
||||
Dice("2d6"),
|
||||
arrayListOf(FlatBonus(5)),
|
||||
15
|
||||
)
|
||||
|
||||
val attackWithAdvantageAndBless = SimpleMeleeAttack(
|
||||
Dice("1d20", RollType.Advantage),
|
||||
arrayListOf(FlatBonus(5), DiceBonus(Dice("1d4"))),
|
||||
Dice("2d6"),
|
||||
arrayListOf(FlatBonus(5)),
|
||||
15
|
||||
)
|
||||
|
||||
val normalAttackModel = AttackSimulatorModel(itt, attack)
|
||||
val normalResults = simulator.doSimulation(normalAttackModel)
|
||||
|
||||
val buffedAttackModel = AttackSimulatorModel(itt, attackWithAdvantageAndBless)
|
||||
val buffedResults = simulator.doSimulation(buffedAttackModel)
|
||||
|
||||
println("Average normal damage: ${normalResults.average()}\nAverage buffed damage: ${buffedResults.average()}")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class testSimulationModel(override val sampleSize: Int) : SimulationModel<Int>{
|
||||
override fun simulate(r: Random): Int {
|
||||
return r.nextInt(20)+1
|
||||
}
|
||||
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user